חAmIBIA UחIVERSITY

OF SCIEMCE AMD TECHחOLOGY

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES
 SCHOOL OF NATURAL AND APPLIED SCIENCES
 DEPARTMENT OF BIOLOGY, CHEMISTRY AND PHYSICS

QUALIFICATION : BACHELOR OF SCIENCE (MAJOR AND MINOR)	
QUALIFICATION CODE: 07BOSC	LEVEL: 6
COURSE CODE: CEB601S	COURSE NAME: CELL BIOLOGY
SESSION: JULY 2023	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

SUPPLEMENTARY/SECOND OPPORTUNITY QUESTION PAPER	
EXAMINER	DR LAMECH MWAPAGHA
MODERATOR	DR JEYA KENNEDY

INSTRUCTIONS

1. Answer ALL the questions.
2. Write clearly and neatly.
3. Number the answers clearly.
4. All written work MUST be done in BLUE or BLACK ink.

PERMISSIBLE MATERIAL

Scientific Calculator
THIS QUESTION PAPER CONSISTS OF EIGHT (8) PAGES
(Including this front page)

SECTION A: MULTIPLE CHOICE QUESTIONS

- There are 20 multiple choice questions in this section. Each question carries 1 mark.
- Answer ALL questions by selecting the LETTER with the correct answer.

1. What is the minimum distance for the eye to focus any object?
A. 11 cm
B. 25 cm
C. 32 cm
D. 42 cm
2. The movement of water molecules from an area of high concentration to an area of low concentration through a semipermeable membrane is known as;
A. Active Transport
B. Diffusion
C. Phagocytosis
D. Osmosis
3. Which of the following statements about the TCA cycle is correct?
A. Oxygen is used to oxidise the acetyl group carbons of acetyl-CoA in the TCA cycle
B. Oxygen is not used in the TCA cycle, so the cycle can occur in anaerobic conditions
C. The TCA cycle produces the water that is formed during the complete oxidation of glucose
D. Three molecules of NADH and one molecule of FADH 2 are produced in one turn of the TCA cycle
4. Which statement correctly outlines some of the main events in photosynthesis?
A. A 5C carbohydrate accepts carbon dioxide and is then reduced by NADPH derived from photophosphorylation.
B. A 3C carbohydrate is regenerated and reduced by hydrogen molecules derived from photophosphorylation.
C. Photolysis uses light to produce reduced NADP and oxygen which are used to reduce a 3C carbohydrate.
D. Photolysis produces NADPH and ATP which are used to reduce a 5C carbohydrate.
5. In which phase of the cell cycle is DNA replicated?
A. G1 phase
B. S phase
C. G2 phase
D. M phase
6. All of the following are part of a prokaryotic cell except;
A. DNA
B. A cell wall
C. Ribosomes
D. An endoplasmic reticulum
7. In a plant cell, DNA may be found;
A. Only in the nucleus and mitochondria
B. Only in the nucleus and chloroplasts
C. In the nucleus, mitochondria, and chloroplasts
D. In the nucleus, mitochondria, chloroplasts, and peroxisomes
8. Which of the following comes under the category of cell surface receptor?
A. Enzyme linked receptors
B. Ion-channel linked receptors
C. G protein linked receptors
D. All of these
9. Primer used for the process of polymerase chain reaction are \qquad .
A. Single stranded DNA oligonucleotide
B. Double stranded DNA oligonucleotide
C. Single stranded RNA oligonucleotide
D. Double stranded RNA oligonucleotide
10. At what temperature do annealing of DNA and primer takes place?
A. 42°
B. 54°
C. 74°
D. 96°
11. Which of the following statements about the generation of ATP in the electron transport chain is correct?
A. The generation of ATP from ADP coupled to electron transfer occurs by substrate level phosphorylation as in glycolysis
B. Electron transport generates a proton gradient across the outer mitochondrial membrane
C. ATP synthase generation of ATP involves a rotating structure outside the inner mitochondrial membrane
D. ATP synthase generation of ATP involves a rotating structure inside the inner mitochondrial membrane
12. Which of the following microscopy techniques, relies on the specimen interfering with the wavelength of light to produce a high contrast image, without the need for dyes or any damage to the sample?
A. Conventional bright field light microscopy
B. Phase contrast microscopy
C. Electron microscopy
D. Fluorescence microscopy
13. Which structure is the site of the synthesis of proteins that may be exported from the cell?
A. Rough ER
B. Lysosomes
C. Plasmodesmata
D. Free cytoplasmic ribosomes
14. What are scaffolding proteins?
A. Microtubular protein arrays that allow lipid-soluble hormones to get from the cell membrane to the nuclear pores
B. Large molecules to which several relay proteins attach to facilitate cascade effects
C. Relay proteins that orient receptors and their ligands in appropriate directions to facilitate their complexing
D. Proteins that can reach into the nucleus of a cell to affect transcription
15. A gas is most soluble in a liquid at
A. Low temperature and low pressure.
B. High temperature and high pressure.
C. High temperature and low pressure.
D. Low temperature and high pressure.
16. Synaptic signaling between adjacent neurons is like hormone signaling in which of the following ways?
A. It sends its signal molecules through the blood.
B. It requires calcium ions.
C. It requires binding of a signaling molecule to a receptor.
D. It persists over a long period.
17. Which of the following is NOT a fat-soluble vitamin?
A. Vitamins A
B. Vitamins B
C. Vitamins D
D. Vitamins K
18. The ribonucleotide polymer (5^{\prime}) GTGATCAAGC(3^{\prime}) could only form a double-stranded structure with;
A. (5')CACTAGTTCG(3')
B. $\left(5^{\prime}\right) \mathrm{CACUAGUUCG}\left(3^{\prime}\right)$
C. (5')CACUTTCGCCC(3')
D. $\left(5^{\prime}\right)$ GCTTGATCAC($\left.3^{\prime}\right)$
19. Which of the following glycosidic linkage found in maltose?
A. Glucose $(\alpha-1-2 \beta)$ Fructose
B. Glucose ($\alpha 1-4$) Glucose
C. Galactose ($\beta 1-4$) Glucose
D. Glucose ($\beta 1-4$) Glucose
20. Potassium cyanide interferes with the formation of ATP. The use of potassium cyanide reduces the rate at which molecules of a certain chemical enter the cell. Select the process by which the molecules would normally enter the cell.
A. Simple diffusion
B. Active transport
C. Facilitated diffusion
D. Osmosis

SECTION B

- There are FIVE (5) questions in this section. Answer all Questions.

Question 1

a) State SIX (6) important enzymes responsible for Krebs cycle reactions.
b) Briefly describe FOUR (4) demerits of the confocal microscope.
c) State FIVE (5) functions of the Nervous tissue.

Question 2

a) Explain the role of each of the following enzymes involved in DNA replication
I. DNA Polymerase:
II. Primase:
III. Helicase:
IV. Topoisomerase:
b) What is the fate of absorbed glucose by tissues in Eukaryotes?
c) State FIVE (5) applications of Polymerase Chain Reaction.

Question 3

a) State the FOUR (4) major Eukaryotic tissues types.
b) Briefly describe EIGHT (8) functions of epithelial cells.

Question 4

a) Using the line structure below draw both the α - form and β-form cyclic structures.

b) Briefly delineate the main types of muscle tissue

Question 5
a) Describe the TWO (2) types of Heterochromatin
b) Briefly discuss the aerobic cellular respiration as a metabolic pathway that breaks down glucose and produces ATP

PERIODIC TABLE OF THE ELEMENTS

1																	18
1 \mathbf{H} 1.00794 3	2											13	14	15	16	17	2 He 4.00260
3	4											5	6	7	8	9	10
Li	Be											B	C	N	0	F	Ne
6.941	9.01218											10.81	12.011	14.0067	15.9994	18.9984	20.179
11	12											13	14	15	16	17	18
Na	Mg											A]	Si	P	S	Cl	Ar
22.9898	24.305	3	4	5	6	7	8	9	10	11	12	26.9815	28.0855	30.9738	32.06	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	$\mathbf{Z n}$	Ga	Ge	As	Se	Br	$\mathbf{K r}$
39.0983	40.08	44.9559	47.88	50.9415	51.996	54.9380	55.847	58.9332	58.69	63.546	65.38	69.72	72.59	74.9216	78.96	79.904	83.8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
$\mathbf{R b}$	Sr	Y	$\mathbf{Z r}$	Nb	Mo	Tc	Ru	$\mathbf{R h}$	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.4678	87.62	88.9059	91.22	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.41	114.82	118.69	121.75	127.6	126.9	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	$\mathbf{P t}$	Au	$\mathbf{H g}$	Tl	Pb	Bi	Po	At	Rn
132.905	137.33	174.967	178.49	180.948	183.85	186.207	190.2	192.22	195.08	196.967	200.59	204.383	207.2	208.908	(209)	(210)	(222)
87	88	103	104	105	106	107	108	109	110	111	112		114		116		118
$\underset{\text { Fr }}{ }$	${ }_{\text {Ra }}$	Lr	Rf	Db	Sg	$\underset{(264)}{\text { Bh }}$	Hs	$\underset{(\underset{2 x R}{ } \mathrm{Mt}}{ }$	Uun (269)	Uuu (272)	Uub (269)		Uuq		Uuh		Uuo
(223)	226.025	(260)	(261)	(262)	(263)	(264)	(265)	(268)	(269)		(269)						

Lanthanides:	57 La 138.906	$\begin{array}{\|c\|} \hline 58 \\ \mathrm{Ce} \\ 140.12 \\ \hline \end{array}$	59 Pr 140.908	$\begin{array}{\|c\|} \hline 60 \\ \mathrm{Nd} \\ 144.24 \\ \hline \end{array}$	61 Pm (145)	$\begin{gathered} 62 \\ \mathrm{Sm} \\ 150.36 \\ \hline \end{gathered}$	$\begin{gathered} 63 \\ \text { Eu } \\ 151.96 \end{gathered}$	$\begin{gathered} 64 \\ \text { Gd } \\ 157.25 \end{gathered}$	$\begin{array}{\|c\|} \hline 65 \\ \mathbf{T b} \\ 158.925 \\ \hline \end{array}$	$\begin{gathered} 66 \\ \mathbf{D y} \\ 162.50 \end{gathered}$	$\begin{array}{\|c\|} \hline 67 \\ \mathbf{H 0} \\ 161.930 \\ \hline \end{array}$	$\begin{gathered} 68 \\ \mathbf{E r} \\ 167.26 \end{gathered}$	$\begin{gathered} 69 \\ \operatorname{Tm}_{166.934} \end{gathered}$	$\begin{gathered} 70 \\ \mathbf{Y b} \\ 173.04 \end{gathered}$
Actinides:	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	$\begin{gathered} \mathbf{A c} \\ 227.028 \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{T h} \\ 232.038 \end{gathered}$	$\begin{gathered} \mathbf{P a} \\ 231.036 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \mathbf{U} \\ 238.029 \end{array}$	$\underset{237.048}{\mathbf{N p}}$	$\underset{(244)}{\mathbb{P u}}$	$\begin{aligned} & \text { Am } \\ & (243) \end{aligned}$	Cm (247)	$\begin{gathered} \mathbf{B k} \\ (247) \end{gathered}$	$\begin{gathered} \text { Cf } \\ (251) \end{gathered}$	$\underset{(252)}{\mathbf{E s}}$	$\underset{(257)}{\mathbf{F m}}$	Md (258)	No (259)

